Agricultural Water Use and Conservation

John Panuska, Ph.D., P.E.

Natural Resources Extension Specialist,
Biological Systems Engineering Department,
UW - Madison

Overview

- On-farm agricultural production only, not product processing.
- Agriculture water uses and factors impacting the largest use.
- What can existing water and energy conservation practices do?

Total Groundwater Pumping ~ 2008 ~

Source: WDNR Bureau of Drinking Water and Groundwater and WI Public Service Commission

Agricultural Groundwater Pumping

Source: WDNR Bureau of Drinking Water and Groundwater

- Climate (temperature and humidity).
- ☐ Soil type (texture).
- Crop type (root depth, drought resistance).
- Irrigation equipment and operation.

Factors Impacting Irrigation Water Use ~ Climate ~

■ Water Input:

Precipitation, includes both rainfall and snowmelf

■ Water Losses:

Evapotranspiration (evaporation and plant transpiration) & drainage.

■ Management Issue:

Spatial and temporal distribution.

□ Climate Change:

Intense rainfall, spatial variability.

Crop	Total ET (inches	Typical Seasonal Irrigation (inches)
Alfalfa	20-22	10-14 (50-64%)
Corn	14-16	10-14 (71-88%)
Soybeans	14-16	8-12 (57-75%)

Average Annual Precipitation = 30 to 34 inches

Source: Midwest Plan Service Sprinkler Irrigation Systems Manual, MWPS 30.

Non-agricultural Agricultural Non-irrigation Agricultural Irrigation

Source: WDNR Bureau of Drinking Water and Groundwater

Different soils retain different amounts of water

Silt loam holds 2.6 times more water than a sandy soil

Factors Impacting Irrigation Water Use ~ Crop Type ~

~ Equipment and Operation ~

Water Application Efficiency =
Water Stored in Soil / Total Water Applied

Preferred irrigation system throughout WI:

Center Pivot

Application efficiency

~ 85 - 90%

~ Equipment and Operation ~

Irrigation Scheduling

- Daily root zone balance of water inputs and outputs.
- Only irrigate when soil moisture is low.
- Reduce deep drainage from over irrigating.

Deep Drainage

~ Equipment and Operation ~

Irrigation Scheduling

- □ ET data are available for all of WI via UW – Soils web site.
- Scheduling software available from UWEX.
- Conserve GW by better using rainfall.
- □ Water conserved is about 10 to 15%.

Deep Drainage

~ Equipment and Operation ~

Uniformity Testing

- □ For systems more than 5 years old.
- Inspect system for leaks and pump malfunctions.
- ☐ Test for uniform spray distribution.
- UWEX provides equipment and training for testing.

Source: Scott Sanford, Biological Systems Engineering Dept. & Focus on Energy

~ Equipment and Operation ~

Convert System to Low Pressure

Source: Scott Sanford, Biological Systems Engineering Dept. & Focus on Energy

Conclusions

- Irrigation is the largest agricultural groundwater use.
- Seasonal irrigation equals about 8 14 inches of water or about 70% of ET.
- Irrigation scheduling can reduce seasonal water use 10 to 15%.
- The number of producers currently scheduling their irrigation is not clear.

Conclusions

- Reducing irrigation system operating pressure by 30 psi can save 413 kW per day of pumping.
- Informational resources are currently available from UWEX for irrigation scheduling, uniformity testing and pressure reduction.
- Irrigation water conservation alone will not restore dry creeks, but can enhance other measures.